Wim Vereecken Michiel Steyaert

AcsP Analog Circuits And Signal Processing

Ultra-Wideband Pulse-based Radio

Reliable Communication over a Wideband Channel

Ultra-Wideband Pulse-based Radio

ANALOG CIRCUITS AND SIGNAL PROCESSING SERIES

Consulting Editor: Mohammed Ismail. Ohio State University

For other titles published in this series, go to http://www.springer.com/series/7381

Wim Vereecken • Michiel Steyaert

Ultra-Wideband Pulse-based Radio

Reliable Communication over a Wideband Channel

Wim Vereecken Katholieke Universiteit Leuven Dept. Electrical Engineering (ESAT) Kasteelpark Arenberg 10 3001 Leuven Belgium wim.vereecken@esat.kuleuven.be Michiel Steyaert Katholieke Universiteit Leuven Dept. Electrical Engineering (ESAT) Kasteelpark Arenberg 10 3001 Leuven Belgium michiel.steyaert@esat.kuleuven.be

ISBN 978-90-481-2449-7 e-ISBN 978-90-481-2450-3 DOI 10.1007/978-90-481-2450-3 Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009926324

© Springer Science+Business Media B.V. 2009

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

Pre	eface		ix
Lis	st of A	Abbreviations and Symbols	xiii
1.	DIG	ITAL COMMUNICATIONS OVER ANALOG CHANNELS	1
	1.1	Wideband radio: spectral and spatial efficiency	6
	1.2	Increasing the spectral bandwidth	7
	1.3	Onwards to software defined radio?	11
	1.4	Interference immunity issues of wideband radio	14
	1.5	Organizational overview of this text	18
2.	MO	DULATION-AWARE ERROR CODING	23
	2.1	Why error coding works	25
	2.2	How error coding works	27
	2.3	Coding: the concept of distance	30
	2.4	Coding for a narrowband, noisy channel	33
	2.5	Coding and modulation for a wideband channel: OFDM	35
	2.6	Wideband single-carrier modulation	38
	2.7	Conclusions on single- and multicarrier systems	44

3.	MO	DULATION-AWARE DECODING: SIGNAL	
	REC	ONSTRUCTION	47
	3.1	Principles of signal reconstruction	48
	3.2	ISSR decoding for wideband QPSK	52
	3.3	Implementation aspects of the ISSR algorithm	55
	3.4	Performance of the ISSR algorithm	57
	3.5	ISSR under non-ideal circumstances	60
4.	BEN	EFITS OF ISI IN THE INDOOR ENVIRONMENT	65
	4.1	Power delay spread	65
	4.2	Frequency-selective versus flat fading	69
	4.3	Coherence time	73
	4.4	Multipath resolvability and link reliability	79
5.	PUL	SE-BASED WIDEBAND RADIO	85
	5.1	Symbol rate versus multipath resolvability	88
	5.2	Synchronization	99
	5.3	ISSR-based diversity combining	106
	5.4	System integration and clock planning	111
	5.5	Comprehensive overview of the pulse-based radio system	114
6.	REFERENCE DESIGN OF A PULSE-BASED RECEIVE UNIT		
	6.1	Receive window specifications	126
	6.2	Multiphase clock generator	130
	6.3	RF input stage	135
	6.4	Design for testability	140
	6.5	Experimental results for the prototype chip	144
	6.6	Summary of the pulse-based receive unit	147
	6.7	Overview and future work	150

7.	NON	ILINEAR LOADED OPEN-LOOP AMPLIFIERS	161
	7.1	Interstage coupling of open-loop transistor stages	162
	7.2	Design considerations on the open-loop core stage	164
	7.3	Improving linearity using a nonlinear load	166
	7.4	Distortion analysis of the nonlinear loaded stage	168
	7.5	Sensitivity analysis of the open-loop amplifier	171
	7.6	Implementation of a linearized open-loop amplifier	175
	7.7	Overview and future work	188
Appendix A. Distortion analysis of feedback amplifiers			193
	A.1	Feedback amplifiers	199
		Distortion in feedback amplifiers	202
		Distortion in a single-stage MOS amplifier	208
	A.2	Frequency dependent distortion in feedback systems	212
		Second-order frequency dependent distortion	215
		Third-order frequency dependent distortion	218
		Feedback-induced third-order distortion	221
		Frequency dependent distortion in a MOS amplifier	225
		Frequency dependent linearity of differential stages	231
		Distortion performance of multistage amplifiers	233
Re	feren	ces	237
Inc	lex		245

Preface

Today's booming expanse of personal wireless radio communications is a rich source of new challenges for the designer of the underlying enabling technologies. Personal communication networks are designed from a fundamentally different perspective than broadcast service networks, such as radio and television. While the focus of the latter is on reliability and user comfort, the emphasis of personal communication devices is on throughput and mobility. However, because the wireless channel is a shared transmission medium with only very limited resources, a trade-off has to be made between mobility and the number of simultaneous users in a confined geographical area. According to Shannon's theorem on channel capacity,¹ the overall data throughput of a communication channel benefits from either a linear increase of the transmission bandwidth, or an (equivalent) exponential increase in signal quality. Consequently, it is more beneficial to think in terms of channel bandwidth than it is to pursue a high transmission power. All the above elements are embodied in the concept of *spatial efficiency*. By describing the throughput of a system in terms of bits/s/Hz/m², spatial efficiency takes into account that the use of a low transmission power reduces the operational range of a radio transmission, and as such enables a higher reuse rate of the same frequency spectrum.

What is not accounted for in the above high-level theoretical perspective, is that a wide transmission bandwidth opens up a Pandora's box of many complications at receiver side. Shannon's theorem is indeed valid for an AWGN channel, but the environment where network devices are operated in, usually refuses to fit this idealized model. A real-world channel, for example, will suffer from multipath reflections: multiple, delayed versions of the same trans-

¹Channel capacity = bandwidth $\times \log_2(1 + \text{signal quality})$.

mission arrive at the receive antenna and start to interfere with one another, an effect that is known as *intersymbol interference*. Apart from this form of self-interference, a wide transmission band is also a wide open door for in-band interfering signals. It is not the presence of the interferer itself that causes the problem, but the sometimes very large difference in the power balance between the unwanted component and the signal-of-interest. By putting considerable stress on the linearity requirements of the receiver, high-powered interferers indirectly impact the battery lifetime of portable devices.

This work lays the foundations of a new radio architecture, based on the pulsebased radio principle. As will become clear throughout this book, using short pulses with a wide spectral footprint has considerable advantages for the reliability of a wireless transmission under indoor channel conditions. Notwithstanding being described as a pulse-based system, the presented architecture is also a direct descendant of single-carrier QPSK modulated radio. This genealogical line ensures the system can enjoy the best of both worlds: a high reliability and a fairly uncomplicated modulation technique.

However, simplicity does not preclude powerful capabilities. From the very early stages on, the high-level system design was conceived with the above described complications of the wideband radio channel in mind. Issues that come with the unpredictable nature of the wireless medium, such as interference and varying channel conditions, are dealt with at multiple levels in the system hierarchy. For example, a specially crafted *interferer suppression and signal reconstruction* algorithm has been developed (chapter 3). Without active intervention from the transmitter, the ISSR system – which is located entirely at receiver side – is capable of on-the-fly cleaning of frequency bands which have fallen victim to multipath fading or narrowband interference. The unique blend of pulse-based radio, a simple modulation scheme and a powerful signal reconstruction system in the back-end make the presented pulse-based radio system a viable and promising alternative for the high-end (but highly complex) modulation schemes such as the OFDM-system currently widely adopted by WLAN applications.

As a proof of concept, the theoretical underpinnings of this work are supported by the implementation of an analog front-end for pulse-based radio in 0.18 μ m CMOS. The quadrature RF front-end comprises a wideband RF input stage, an I/Q pulse-to-baseband downconversion mixer and a variable gain amplifier (the latter based on a novel highly-linear open-loop topology). The prototype chip has drawn attention to some subtle technical issues inherent to pulse-based radio. For example, the sensitivity of the receiver may be adversely affected by leakage of clock signals into the sensitive signal chain. While this effect does not come to the surface in high-level system simulations, it can be easily prevented by some simple precautions in the early stages of the design process. Preface

As a conclusion, the chip-level realization did not only prove the feasibility of a quadrature pulse-based transceiver system, but has also marked some key points that need special attention from a developer's viewpoint during the design of a pulse-based radio chipset.

Leuven, Belgium October 2008 Wim Vereecken

List of Abbreviations and Symbols

Abbreviations

AC	Alternating current (commonly used in a small-signal
	context)
ADC	Analog-to-digital converter
AFC	Automatic frequency control
AGC	Automatic gain control
AM	Amplitude modulation
AM-SSB	Single sideband AM
AM-VSB	Amplitude modulation with a vestigial sideband
	(TV broadcast)
AWGN	Additive white Gaussian noise
BALUN	Balanced to unbalanced transformer
BER	Bit error rate
BICM	Bit interleaved coded modulation
BPF	Band-pass filter
BPSK	Binary phase shift keying
BW	Bandwidth
C/A	Coarse acquisition code (GPS related)
CCITT	Comité Consultatif International Téléphonique
	et Télégraphique
CCK	Complementary code keying
CDF	Cumulative distribution function
CDMA	Code division multiple access
\mathbf{CF}	Crest factor
CL	Closed-loop
CMFB	Common-mode feedback

CML	Current mode logic
CMOS	Complementary metal oxide semiconductor
CMRR	Common mode rejection ratio
CNR	Carrier-to-noise ratio
CSMA/CA	Carrier sense multiple access/collision avoidance
СТ	Confidence threshold
DAC	Digital-to-analog converter
DC	Direct current
DFT	Discrete Fourier transform
DIFS	Distributed interframe spacing (IEEE802.11 related)
DLL	Data link layer of the OSI model
DLL	Delay locked loop (PLL related)
DSP	Digital signal processing
DSSS	Direct sequence spread spectrum
E_b/N_0	Bit energy over noise density ratio
EGC	Equal gain combining
EIRP	Effective isotropic radiated power
ENOB	Effective number of bits
ERBW	Effective resolution bandwidth
ESD	Energy spectral density
ESD	Electrostatic discharge (protection circuit)
EVM	Error vector magnitude
FCC	Federal Communications Commission
FDMA	Frequency division multiple access
FEC	Forward error coding
FFT	Fast Fourier transform
FHSS	Frequency-hopping spread spectrum
FIR	Finite impulse response
FM	Frequency modulation
FSK	Frequency shift keying
FUND_{X}	Fundamental component at node <i>x</i>
GBW	Gain-bandwidth product
GMSK	Gaussian minimum shift keying
GPS	Global Positioning System
GSM	Global System for Mobile communications
$\mathrm{HARM}_{n,x}$	<i>n</i> -th order harmonic component at node <i>x</i>
HD	Harmonic distortion
HD_2	Second-order harmonic distortion
HD_3	Third-order harmonic distortion
hop	Change of frequency in a FHSS transmission
IC	Integrated circuit
IDFT	Inverse discrete Fourier transform

IF	Intermediate frequency
IIP ₃	Input-referred IP ₃
IIR	Infinite impulse response
IL	Implementation loss
IM	Intermodulation
IM ₃	Third-order intermodulation
IO	Input/output communication
IP ₃	Third-order interception point
I/Q	In-phase/quadrature
ISI	Intersymbol interference
ISM	Industrial, Scientific and Medical radio bands
ISSR	Interferer suppression and signal reconstruction
ITU	International Telecommunication Union
ITU-T	ITU Telecommunication Standardization Sector
L1	GPS L1 frequency band (1,575.42 MHz)
LAN	Local area network
LNA	Low noise amplifier
LO	Local oscillator
LOS	Line-of-sight
LPF	Low-pass filter
LQFP-32	Low-profile quad flat package (32 leads)
LTI	Linear time-invariant
LVDS	Low-voltage differential signalling
MAC	Media access control layer of the OSI model
MODEM	Modulator-demodulator
MOS	Metal oxide semiconductor
MP	Multipath
MRC	Maximum ratio combining
MS	Mobile station
MSB	Most significant bit
MSE	Mean square error
MSED	Minimum squared euclidean distance
MSK	Minimum shift keying
N-FM	Narrowband FM
NBI	Narrowband interference
NLOS	Non-line-of-sight
NMOS	n-channel MOS transistor
OFDM	Orthogonal frequency division multiplexing
OIP ₃	Output-referred IP ₃
OL	Open-loop
OSI	Open Systems Interconnection basic reference model
OTA	Operational transconductance amplifier

PAE	Power-added efficiency
PAPR	Peak-to-average power ratio
PDF	Probability density function
PDP	Power delay profile
PHY	Physical layer of the OSI model
PL	Path loss
PL_{d0}	Path loss at d ₀ meter distance
PLL	Phase locked loop
PMOS	p-channel MOS transistor
POTS	Plain old telephone service
PPM	Pulse position modulation
PRN	Pseudorandom noise
PSD	Power spectral density
PSK	Phase shift keying
PSO	Particle swarm optimization
PSTN	Public switched telephone network
QAM	Quadrature amplitude modulation
QPSK	Quadrature phase shift keying
rake	Rake receiver: a radio receiver using several sub-receivers
RDS	Radio Data Service (on FM 57 kHz subcarrier)
RF	Radio frequency
RFID	Radio-frequency identification
RMS	Root mean square
RPE-LTP	Regular Pulse Excitation with Long-Term Prediction
RS-232	IEEE recommended standard 232 for serial interfacing
RX	Receive
RZ	Return-to-zero (related to line codes)
SAW	Surface acoustic wave
SDC	Selection diversity combining
SDR	Software defined radio
SIFS	Short interframe spacing (IEEE802.11 related)
SNR	Signal-to-noise ratio
SoC	System-on-a-chip
TCM	Trellis coded modulation
TCP/IP	Transmission control protocol/Internet protocol
TF	Transfer function
THD	Total harmonic distortion
TSP	True single phase (related to dynamic logic circuits)
TDMA	Time division multiple access
ТХ	Transmit
UMTS	Universal Mobile Telecommunications System (3G)
USB	Universal Serial Bus