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Preface

Today’s booming expanse of personal wireless radio communications is a rich
source of new challenges for the designer of the underlying enabling tech-
nologies. Personal communication networks are designed from a fundamen-
tally different perspective than broadcast service networks, such as radio and
television. While the focus of the latter is on reliability and user comfort, the
emphasis of personal communication devices is on throughput and mobility.
However, because the wireless channel is a shared transmission medium with
only very limited resources, a trade-off has to be made between mobility and
the number of simultaneous users in a confined geographical area. Accord-
ing to Shannon’s theorem on channel capacity,1 the overall data throughput of
a communication channel benefits from either a linear increase of the trans-
mission bandwidth, or an (equivalent) exponential increase in signal quality.
Consequently, it is more beneficial to think in terms of channel bandwidth than
it is to pursue a high transmission power. All the above elements are embodied
in the concept of spatial efficiency. By describing the throughput of a system
in terms of bits/s/Hz/m2, spatial efficiency takes into account that the use of a
low transmission power reduces the operational range of a radio transmission,
and as such enables a higher reuse rate of the same frequency spectrum.

What is not accounted for in the above high-level theoretical perspective, is
that a wide transmission bandwidth opens up a Pandora’s box of many com-
plications at receiver side. Shannon’s theorem is indeed valid for an awgn

channel, but the environment where network devices are operated in, usually
refuses to fit this idealized model. A real-world channel, for example, will suf-
fer from multipath reflections: multiple, delayed versions of the same trans-

1Channel capacity = bandwidth × log2(1 + signal quality).
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mission arrive at the receive antenna and start to interfere with one another, an
effect that is known as intersymbol interference. Apart from this form of self-
interference, a wide transmission band is also a wide open door for in-band
interfering signals. It is not the presence of the interferer itself that causes the
problem, but the sometimes very large difference in the power balance between
the unwanted component and the signal-of-interest. By putting considerable
stress on the linearity requirements of the receiver, high-powered interferers
indirectly impact the battery lifetime of portable devices.

This work lays the foundations of a new radio architecture, based on the pulse-
based radio principle. As will become clear throughout this book, using short
pulses with a wide spectral footprint has considerable advantages for the re-
liability of a wireless transmission under indoor channel conditions. Notwith-
standing being described as a pulse-based system, the presented architecture
is also a direct descendant of single-carrier qpsk modulated radio. This ge-
nealogical line ensures the system can enjoy the best of both worlds: a high
reliability and a fairly uncomplicated modulation technique.

However, simplicity does not preclude powerful capabilities. From the very
early stages on, the high-level system design was conceived with the above
described complications of the wideband radio channel in mind. Issues that
come with the unpredictable nature of the wireless medium, such as interfer-
ence and varying channel conditions, are dealt with at multiple levels in the
system hierarchy. For example, a specially crafted interferer suppression and
signal reconstruction algorithm has been developed (chapter 3). Without active
intervention from the transmitter, the issr system – which is located entirely
at receiver side – is capable of on-the-fly cleaning of frequency bands which
have fallen victim to multipath fading or narrowband interference. The unique
blend of pulse-based radio, a simple modulation scheme and a powerful signal
reconstruction system in the back-end make the presented pulse-based radio
system a viable and promising alternative for the high-end (but highly com-
plex) modulation schemes such as the ofdm-system currently widely adopted
by wlan applications.

As a proof of concept, the theoretical underpinnings of this work are supported
by the implementation of an analog front-end for pulse-based radio in 0.18 μm
cmos. The quadrature rf front-end comprises a wideband rf input stage,
an i/q pulse-to-baseband downconversion mixer and a variable gain amplifier
(the latter based on a novel highly-linear open-loop topology). The prototype
chip has drawn attention to some subtle technical issues inherent to pulse-based
radio. For example, the sensitivity of the receiver may be adversely affected by
leakage of clock signals into the sensitive signal chain. While this effect does
not come to the surface in high-level system simulations, it can be easily pre-
vented by some simple precautions in the early stages of the design process.
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As a conclusion, the chip-level realization did not only prove the feasibility
of a quadrature pulse-based transceiver system, but has also marked some key
points that need special attention from a developer’s viewpoint during the de-
sign of a pulse-based radio chipset.

Leuven, Belgium Wim Vereecken
October 2008
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