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Preface

There are already many good books on representation theory for all kinds of groups.
Two of the best (in this author’s opinion) are the one by A.W. Knapp: “Representation
Theory for Semisimple Groups. An Overview based on Examples” [Kn1] and by G.W.
Mackey: “Induced Representations in Physics, Probability and Number Theory” [Ma1].
The title of this text is a mixture of both these titles, and our text is meant as a very
elementary introduction to these and, moreover, to the whole topic of group represen-
tations, even infinite-dimensional ones. As is evident from the work of Bargmann [Ba],
Weyl [Wey] and Wigner [Wi], group representations are fundamental for the theory of
atomic spectra and elementary physics. But representation theory has proven to be an
inavoidable ingredient in other fields as well, particularly in number theory, as in the
theory of theta functions, automorphic forms, Galois representations and, finally, the
Langlands program. Hence, we present an approach as elementary as possible, having in
particular these applications in mind.

This book is written as a summary of several courses given in Hamburg for students of
Mathematics and Physics from the fifth semester on. Thus, some knowledge of linear
and multilinear algebra, calculus and analysis in several variables is taken for granted.
Assuming these prerequisites, several groups of particular interest for the applications in
physics and number theory are presented and discussed, including the symmetric group
Sn as the leading example for a finite group, the groups SO(2), SO(3), SU(2), and SU(3)
as examples of compact groups, the Heisenberg groups and SL(2,R), SL(2,C), resp. the
Lorentz group SO(3, 1) as examples for noncompact groups, and the Euclidean groups
E(n) = SO(n)�Rn and the Poincaré group P = SO(3, 1)+ �R4 as examples for semidi-
rect products.

This text would not have been possible without the assistance of my students and colleagues; it

is a pleasure for me to thank them all. In particular, D. Bahns, S. Böcherer, O. v. Grudzinski,

M. Hohmann, H. Knorr, J. Michaliček, H. Müller, B. Richter, R. Schmidt, and Chr. Schweigert

helped in many ways, from giving valuable hints to indicating several mistakes. Part of the

material was treated in a joint seminar with Peter Slodowy. I hope that a little bit of his way

of thinking is still felt in this text and that it is apt to participate in keeping alive his memory.

Finally, I am grateful to U. Schmickler-Hirzebruch and S. Jahnel from the Vieweg Verlag for

encouragement and good advice.



Contents

Introduction ix

0 Prologue: Some Groups and their Actions 1
0.1 Several Matrix Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Group Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.3 The Symmetric Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Basic Algebraic Concepts 7
1.1 Linear Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Equivalent Representations . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 First Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Basic Construction Principles . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Sum of Representations . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Tensor Product of Representations . . . . . . . . . . . . . . . . . . 14
1.4.3 The Contragredient Representation . . . . . . . . . . . . . . . . . . 15
1.4.4 The Factor Representation . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Representations of Finite Groups 23
2.1 Characters as Orthonormal Systems . . . . . . . . . . . . . . . . . . . . . 23
2.2 The Regular Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Characters as Orthonormal Bases . . . . . . . . . . . . . . . . . . . . . . 28

3 Continuous Representations 31
3.1 Topological and Linear Groups . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 The Continuity Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Invariant Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Representations of Compact Groups 43
4.1 Basic Facts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 The Example G = SU(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 The Example G = SO(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Representations of Abelian Groups 59
5.1 Characters and the Pontrjagin Dual . . . . . . . . . . . . . . . . . . . . . 59
5.2 Continuous Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . 60



viii CONTENTS

6 The Infinitesimal Method 63
6.1 Lie Algebras and their Representations . . . . . . . . . . . . . . . . . . . . 63
6.2 The Lie Algebra of a Linear Group . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Derived Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4 Unitarily Integrable Representations of sl(2,R) . . . . . . . . . . . . . . . 73
6.5 The Examples su(2) and heis(R) . . . . . . . . . . . . . . . . . . . . . . . 82
6.6 Some Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.6.1 Specifications of Groups and Lie Algebras . . . . . . . . . . . . . . 85
6.6.2 Structure Theory for Complex Semisimple Lie Algebras . . . . . . 89
6.6.3 Structure Theory for Compact Real Lie Algebras . . . . . . . . . . 93
6.6.4 Structure Theory for Noncompact Real Lie Algebras . . . . . . . . 95
6.6.5 Representations of Highest Weight . . . . . . . . . . . . . . . . . . 97

6.7 The Example su(3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Induced Representations 117
7.1 The Principle of Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1.1 Preliminary Approach . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.1.2 Mackey’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.1.3 Final Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.1.4 Some Questions and two Easy Examples . . . . . . . . . . . . . . . 126

7.2 Unitary Representations of SL(2,R) . . . . . . . . . . . . . . . . . . . . . 130
7.3 Unitary Representations of SL(2,C) and of the Lorentz Group . . . . . . . 143
7.4 Unitary Representations of Semidirect Products . . . . . . . . . . . . . . . 147
7.5 Unitary Representations of the Poincaré Group . . . . . . . . . . . . . . . 154
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Introduction

In this book, the groups enumerated in the Preface are introduced and treated as matrix
groups to avoid as much as possible the machinery of manifolds, Lie groups and bundles
(though some of it soon creeps in through the backdoor as the theory is further devel-
oped). Parallel to information about the structure of our groups we shall introduce and
develop elements of the representation theory necessary to classify the unitary represen-
tations and to construct concrete models for these representations. As the main tool
for the classification we use the infinitesimal method linearizing the representations of a
group by studying those of the Lie algebra of the group. And as the main tools for the
construction of models for the representations we use

– tensor products of the natural representation,
– representations given by smooth functions (in particular polynomials) living on a

space provided with an action of the group,
and

– the machinery of induced representations.
Moreover, because of the growing importance in physics and the success in deriving
branching relations, the procedure of geometric quantization and the orbit method, de-
veloped and propagated by Kirillov, Kostant, Duflo and many others shall be explained
via its application to some of the examples above.

Besides the sources already mentioned, the author was largely influenced by the now
classical book of Kirillov: “Elements of the Theory of Representations” [Ki] and the
more recent “Introduction to the Orbit Method” [Ki1]. Other sources were the books
by Barut and Raczka: “Theory of Group Representations and Applications” [BR], S.
Lang: “SL(2,R)” [La], and, certainly, Serre: “Linear Representations of Finite Groups”
[Se]. There is also the book by Hein: “Einführung in die Struktur- und Darstellungs-
theorie der klassischen Gruppen” [Hei], which follows the same principle as our text,
namely to do as much as possible for matrix groups, but does not go into the infinite-
dimensional representations necessary for important applications. Whoever is further
interested in the history of the introduction of representation theory into the theory of
automorphic forms and its development is referred to the classical book by Gelfand, Graev
and Pyatetskii-Shapiro: “Representation Theory and Automorphic Forms” [GGP], Gel-
bart’s: “Automorphic Forms on Adèle Groups” [Ge], and Bump’s: “Automorphic Forms
and Representations” [Bu]. More references will be given at the appropriate places in our
text; as already said, we shall start using material only from linear algebra and analysis.
But as we proceed more and more elements from topology, functional analysis, complex
function theory, differential and symplectic geometry will be needed. We will try to in-
troduce these as gently as possible but often will have to be very rudimentary and will
have to cite the hard facts without the proofs, which the reader can find in the more
refined sources.



To sum up, this text is prima facie about real and complex matrices and the nice and
sometimes advanced things one can do with them by elementary means starting from
a certain point of view: Representation theory associates to each matrix from a given
group G another matrix or, in the infinite-dimensional case, an operator acting on a
Hilbert space. One may want to ask, why study these representations by generally more
complicated matrices or operators if the group is already given by possibly rather simple
matrices? An answer to this question is a bit like the one for the pudding: the proof
is in the eating. And we hope our text will give an answer. To the more impatient
reader who wants an answer right away in order to decide whether to read on or not, we
offer the following rough explanation. Certain groups G appear in nature as symmetry
groups leaving invariant a physical or dynamical system. For example, the orthogonal
group O(3) is the symmetry group for the description of the motion of a particle in a
central symmetric force field, and the Poincaré group P is the symmetry group for the
motion of a free particle in Minkowski space. Then the irreducible unitary representa-
tions of G classify indivisible intrinsic descriptions of the system and, boldly spoken, can
be viewed as “elementary particles” for the given situation. Following Wigner and his
contemporaries, the parameters classifying the representations are interpreted as quan-
tum numbers of these elementary particles. . .

The importance of representations for number theory is even more difficult to put into a
nutshell. In the Galois theory of algebraic number fields (of finite degree) Galois groups
appear as symmetry groups G. Important invariants of the fields are introduced via cer-
tain zeta- or L-functions, which are constructed using finite-dimensional representations
of these Galois groups. Another aspect comes from considering smooth (holomorphic
resp. meromorphic) functions in several variables which are periodic or have a more gen-
eral covariant transformation property under the action of a given discrete subgroup of
a continuous group G, like for instance G = SL(2,R) or G a Heisenberg or a symplectic
group. Then these functions with preassigned types, e.g., theta functions or modular
forms, generate representation spaces for (infinite-dimensional) representations of the re-
spective group G.

Finally, we will give an overview over the contents of our text: In a prologue we will fix
some notation concerning the groups and their actions that we later use as our first ex-
amples, namely, the general and special linear groups over the real and complex numbers
and the orthogonal and unitary groups. Moreover, we present the symmetric group Sn

of permutations of n elements and some facts about its structure. We stay on the level of
very elementary algebra and stick to the principle to introduce more general notions and
details from group theory only when needed in our development of the representation
theory. We follow this principle in the first chapter where we introduce the concept of
linear representations using only tools from linear algebra. We define and discuss the
fundamental notions of equivalence, irreducibility, unitarity, direct sums, tensor product,
characters, and give some first examples.

The theory developed thus far is applied in the second chapter to the representations of
finite groups, closely following Serre’s exposition [Se]. We find out that all irreducible
representations may be unitarized and are contained in the regular representation.



In the next step we move on to compact groups. To do this we have to leave the purely
algebraic ground and take in topological considerations. Hence, in the third chapter, we
define the notion of a topological and of a (real or complex) linear group, the central
notion for our text. Following this, we refine the definition of a group representation by
adding the usual continuity condition. Then we adequately modify the general concepts
of the first chapter. We try to take over as much as possible from finite to compact
groups. This requires the introduction of invariant measures on spaces with a (from now
on) continuous group action, and a concept of integration with respect to these measures.
In the forth chapter we concentrate on compact groups and prove that the irreducible
representations are again unitarizable, finite-dimensional, fixed by their characters and
contained in the regular representation. But their number is in general not finite, in
contrast to the situation for finite groups. We state, but do not prove, the Peter-Weyl
Theorem. But to get a (we hope) convincing picture, we illustrate it by reproducing
Wigner’s discussion of the representaions of SU(2) and SO(3). We use and prove that
SU(2) is a double cover of SO(3). Angular momentum, magnetic and spin quantum
numbers make an appearance, but for further application to the theory of atomic spectra
we refer to [Wi] and the physics literature.

In a very short fifth chapter, we assemble some material about the representations of
locally compact abelian groups. We easily get the result that every unitary irreducible
representation is one-dimensional. But as can be seen from the example G = R, their
number need not be denumerable. More functional analysis than we can offer at this
stage is needed to decompose a given reducible representation into a direct integral of
irreducibles, a notion we not consider here.

Before starting the discussion of representations of other noncompact groups, we present
in chapter 6 an important tool for the classification of representations, the infinitesimal
method. Here, at first, we have to explain what a Lie algebra is and how to associate
one to a given linear group. Our main ingredient is the matrix exponential function and
its properties. We also reflect briefly on the notion of representations of Lie algebras.
Here again we are on purely algebraic, at least in examples, easily accessible ground.
We start giving examples by defining the derived representation dπ of a given group
representation π. We do this for the Schrödinger representation of the Heisenberg group
and the standard representation π1 of SU(2). Then we concentrate on the classification
of all unitary irreducible representations of SL(2,R) via a description of all (integrable)
representations of its Lie algebra. Having done this, we consider again the examples su(2)
and heis(R) (relating them to the theory of the harmonic oscillator) and give some hints
concerning the general structure theory of semisimple Lie algebras. The way a general
classification theory works is explained to some extent by considering Lie SU(3); we will
see how quarks show up.

Chapters 7 and 8 are the core of our book. In the seventh chapter we introduce the
concept of induced representations, which allows for the construction of (sometimes
infinite-dimensional) representations of a given group G starting from a (possibly one-
dimensional) representation of a subgroup H of G. To make this work we need again a
bit more Hilbert space theory and have to introduce quasi-invariant measures on spaces
with group action. We illustrate this by considering the examples of the Heisenberg
group and G = SU(2), where we rediscover the representations which we already know.
Then we use the induction process to construct models for the unitary representations of



SL(2,R) and SL(2,C). In particular, we show how holomorphic induction arises in the
discussion of the discrete series of SL(2,R) (here we touch complex function theory). We
insert a brief discussion of the Lorentz group GL = SO(3, 1)0 and prove that SL(2,C)
is a double cover of GL. To get a framework for the discussion of the representations of
the Poincaré group GP , which is a semidirect product of the Lorentz group with R4, we
define semidirect products and treat Mackey’s theory in a rudimentary form. We outline
a recipe to classify and construct irreducible representations of semidirect products if
one factor is abelian. We do not prove the general validity of this procedure as Mackey’s
Imprimitivity Theorem is beyond the scope of our book, but we apply it to determine
the unitary irreducible representations of the Euclidean and the Poincaré group, which
are fundamental for the classification of elementary particles.

Under the heading of Geometric Quantization, in the eighth chapter we take an alterna-
tive approach to some material from chapter 7 by constructing representations via the
orbit method. Here we have to recall (or introduce) more concepts from higher analysis:
manifolds and bundles, vector fields, differential forms, and in particular the notion of
a symplectic form. We can again use the information and knowledge we already have
of our examples G = SL(2,R), SU(2) and the Heisenberg group to get a feeling what
should be done here. We identify certain spheres and hyperboloids as coadjoint orbits of
the respective groups, and we construct line bundles on these orbits and representation
spaces consisting of polarized sections of the bundles.

Finally, in the nineth and last chapter, we give a brief outlook on some examples where
representations show up in number theory. We present the notion of an automorphic
representation (in a rudimentary form) and explain its relation with theta functions and
automorphic forms. We have a glimpse upon Hecke’s and Artin’s L-functions and men-
tion the Artin conjecture.

We hope that some of the exercises and/or omitted proofs may give a starting point for
a bachelor thesis, and also that this text motivates further studies in a master program
in theoretical physics, algebra or number theory.

¡ Libro, afán
de estar en todas partes,
en soledad!

J. R. Jiménez



Chapter 0

Prologue: Some Groups and
their Actions

This text is mainly on groups which some way or another come from physics and/or
number theory and which can be described in form of a real or complex matrix group.

0.1 Several Matrix Groups

We will use the following notation:
The letter K indicates a field. The reader is invited to think of the field R of real or C
of complex numbers. Most of the things we do at the beginning of our text are valid also
for more general fields at least if they are algebraically closed and of characteristic zero,
but as this is only an introduction for lack of space we will not go into this to a greater
depth.
Mm,n(K) denotes the K-vector space of m × n matrices A = (aij) with aij ∈ K (i =
1, . . . ,m, j = 1, . . . , n) and Mn(K) stands for Mn,n(K).
Our groups will be (for some n) subgroups of of the general linear group of invertible
n × n-matrices

GL(n,K) := {A ∈ Mn(K); det A �= 0 }.
As usual, we will denote the special linear group by

SL(n,K) := {A ∈ Mn(K); detA = 1 },

the orthogonal group by

O(n) := {A ∈ Mn(R); tAA = En },

resp. for n = p + q

O(p, q) := {A ∈ Mn(R); tADp,qA = Dp,q },

where Dp,q is the diagonal matrix having p times 1 and q times −1 in its diagonal, and
the unitary group

U(n) := {A ∈ Mn(C); tAĀ = En },
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resp. for n = p + q

U(p, q) := {A ∈ Mn(R); tADp,qĀ = Dp,q }.
Again, addition of the letter S to the symbol of the group indicates that we take only
matrices with determinant 1, e.g.

SO(n) := {A ∈ O(n); det A = 1 }.
These groups together with some other families of groups, in particular the symplectic
groups showing up later, are known as classical groups.

Later on, we will often use subgroups consisting of certain types of block matrices, e.g.
the group of diagonal matrices

An := {D(a1, . . . , an); a1, . . . , an ∈ K∗ },
where D(a1, . . . , an) denotes the diagonal matrix with the elements a1, . . . , an in the di-
agonal, or the group of upper triangular matrices (or standard Borel group) Bn consisting
of matrices with zeros below the diagonal and the standard unipotent group Nn, the sub-
group of Bn where all diagonal elements are 1.
In view of the importance for applications, moreover, we distinguish several types of
Heisenberg groups: Thus the group N3 we just defined, is mostly written as

Heis′(K) := { g =

⎛
⎝ 1 x z

1 y
1

⎞
⎠ ; x, y, z ∈ K }.

In the later application to theta functions it will become clear that, though it may seem
more complicated, we shall better use the following description for the Heisenberg group.

Heis(K) := { g = (λ, µ, κ) :=

⎛
⎜⎜⎝

1 0 0 µ
λ 1 µ κ
0 0 1 −λ
0 0 0 1

⎞
⎟⎟⎠ ; µ, λ, κ ∈ K },

and the “higher dimensional” groups, which for typographical reasons we here do not
write as matrix groups

Heis(Kn) := { g = (x, y, z); x, y ∈ Kn, z ∈ K }
with the multiplication law given by

gg′ = (x + x′, y + y′, z + z′ + txy′ − tyx′).

We suggest to write elements of Kn as columns.

Exercise 0.1: Write Heis(Kn) in matrix form. Show that Heis(Kn) for n = 1 and the
other two Heisenberg groups above are isomorphic.

Exercise 0.2: Verify that the matrices(
0 1
−1 0

)
,

(
z 0
0 z̄

)
, z ∈ C∗ := C \ {0}

generate (by taking all possible finite products) a non-abelian subgroup of GL(2,C).
This is called the Weil group of R and plays an important role in the epilogue at the end
of our text.
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0.2 Group Actions

Most groups “appear in nature” as transformation groups acting on some set or space.
This motivates the introduction of the following concepts.

Let G be a group with neutral element e and let X be a set.

Definition 0.1: G acts on X from the left iff a map

G ×X −→ X , (g, x) �−→ g · x

is given, which satisfies the conditions

g · (g′ · x) = (gg′) · x, e · x = x

for all g, g′ ∈ G and x ∈ X .

Remark 0.1: If AutX denotes the group of all bijections of X onto itself, the definition
says that we have a group homomorphism G −→ AutX associating to every g ∈ G the
transformation x �−→ g · x.

In this case the set X is also called a left G-set.

The group action is called effective iff no element except the neutral element e acts as
the identity, i.e. the homomorphism G −→ AutX is faithful.

The group action is called transitive iff for every pair x, x′ ∈ X there is a g ∈ G with
x′ = g · x.

For x0 ∈ X we call the subset of X

G · x0 := {g · x0; g ∈ G }

an orbit of G (through x0) and the subgroup

Gx0 := {g ∈ G; g · x0 = x0 }

the isotropy group or the stabilizing group of x0.

Example 0.1: G = GL(n,K) and its subgroups act on X = Kn from the left by matrix
multiplication

(A, x) �−→ Ax

for x ∈ Kn (viewed as a column).

Exercise 0.3: Assure yourself that GL(n,K) acts transitively on X = Kn \ {0}.
Describe the orbits of SO(n).
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Example 0.2: A group acts on itself from the left in three ways:
a) by left translation (g, g0) �−→ g · g0 = gg0 =: λgg0,
b) by (the inverse of) right translation (g, g0) �−→ g · g0 = g0g

−1 =: ρg−1g0,
c) by conjugation (g, g0) �−→ g · g0 = gg0g

−1 =: κgg0.
Left- and right translations are obviously transitive actions. For a given group, the de-
termination of its conjugacy classes, i.e. the classification of the orbits under conjugation
is a highly interesting question, as we shall see later.

Exercise 0.4: Determine a family of matrices containing exactly one representative for
each conjugacy class of G1 = GL(2,C) and G2 = GL(2,R).

Definition 0.2: A set is called a homogeneous space iff there is a group G acting tran-
sitively on X .

Remark 0.2: In this case one has X = G · x for each x ∈ X and any two stabilizing
groups Gx and Gx′ are conjugate. (Prove this as Exercise 0.5.)

Definition 0.3: For any G-set we shall denote by X/G or XG the set of G-orbits in
X and by XG the set of fixed points for G, i.e. those points x ∈ X for which one has
g · x = x for all g ∈ G.

If the set X has some structure, for instance, if X is a vector space, we will (tacidly)
additionally require that a group action preserves this structure, i.e. in this case that
x �−→ g · x is a linear map for each g ∈ G (or later on, is continuous if X is a topological
space). It is a fundamental question whether the orbit space X/G inherits the same
properties as the space X may have. For instance, if X is a manifold, is this true also
for X/G? We will come back to this question later several times. Here let us only look
at the following situation: Let X be a homogeneous G-space, x0 ∈ X , and H = Gx0 the
isotropy group. Then we denote by G/H the set of left cosets gH := {gh; h ∈ H}. These
are also to be seen as H-orbits H · g where H acts on G by right translation. G/H is a
G-set, G acting by (g, g0H) �−→ gg0H. Then we shall identify G/H and X via the map

G/H −→ X , gH �−→ g · x0.

This map is an example for the following general notion.
Definition 0.4: Let X and X ′ be G-sets and f : X −→ X ′ be a map. The map f is
called G-equivariant or a G-morphism iff one has for every g ∈ G and x ∈ X

g · f(x) = f(g · x).

Now we come back to the question raised above.
Exercise 0.6: Prove that G/H has the structure of a group iff H is not only a subgroup
but a normal subgroup, i.e. one has ghg−1 ∈ H for all g ∈ G,h ∈ H.

We mention here another useful fact: If H is a subgroup of G, one defines the normalizer
of H in G as

NG(H) := {g ∈ G; gHg−1 = H}.
It is clear that NG(H) is the maximal subgroup in G that has H as a normal sub-
group. Then the group Aut (G/H) of G-equivariant bijections of G/H is isomorphic to
NG(H)/H. (Prove this as Exercise 0.7.)


