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Preface

This book is designed to present some recent results on some nonlinear parabolic-hyper-
bolic coupled systems arising from physics, mechanics and material science such as the
compressible Navier-Stokes equations, thermo(visco)elastic systems and elastic systems.
Some of the content of this book is based on research carried out by the author and his
collaborators in recent years. Most of it has been previously published only in original
papers, and some of the material has never been published until now. Therefore, the author
hopes that the book will benefit both the interested beginner in the field and the expert.

All the models under consideration in Chapters 2–10 are built on nonlinear evolution
equations that are parabolic-hyperbolic coupled systems of partial differential equations
with time t as one of the independent variables. This type of partial differential equations
arises not only in many fields of mathematics, but also in other branches of science such
as physics, mechanics and materials science, etc. For example, some models studied in
this book, such as the compressible Navier-Stokes equations (a 1D heat conductive vis-
cous real gas and a polytropic ideal gas) from fluid mechanics, and thermo(visco)elastic
systems from materials science, are typical examples of nonlinear evolutionary equations.

It is well known that the properties of solutions to nonlinear parabolic-hyperbolic
coupled systems are very different from those of parabolic or hyperbolic equations. Since
the 1970s, more and more mathematicians have begun to focus their interests on the study
of local well-posedness, global well-posedness and blow-up of solutions in a finite time.
Local well-posedness means that, for any given initial datum, a solution exists locally in
time, and if it exists locally in time, it is unique and stable in some sense in the considered
class. Generally speaking, we have two powerful tools to derive the local existence of
solutions to a wide of class of nonlinear evolutionary equations, i.e., the contraction map-
ping theorem and the Leray-Schauder fixed point theorem. Once a local solution in some
sense has been established, we may talk about the global well-posedness of solutions, i.e.,
the global-in-time existence, uniqueness and stability of global solutions. Since the 1960s,
many methods of studying global well-posedness have been developed, among which are
two powerful tools to derive the global existence of solutions; one is continuation of local
solutions, the other is the global iteration method.

In the 1980s, more interest was focused on the global existence of “small solutions”.
However, knowledge about the global existence of a “small solution” is usually far from
being enough for physical and mechanical problems. Thus we have to look for global
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solutions with arbitrary (not necessarily small) initial data. It turns out that an important
step is to derive uniform a priori estimates on the solutions by using the special constitu-
tive relations of the equations under consideration. Once global existence and uniqueness
have been established, then the main interest should be focused on topics related to the
asymptotic behavior of solutions, multiplicity of equilibria, convergence to an equilib-
rium, dynamical systems such as absorbing sets, the maximal compact attractor, etc. The
study of asymptotic behavior of solutions can be divided into two categories. The first
category comprises investigations of asymptotic behavior of the global solution for any
given initial datum. The second category comprises investigations of asymptotic behavior
of all solutions when the initial data vary in any bounded set. There are essential differ-
ences between these two categories. The first category deals with only one orbit starting
from the datum in the phase space, while the second category deals with a family of orbits
starting from any bounded set in the phase space.

For the basic theories of infinite-dimensional dynamical systems, we refer readers
to the works by Babin [16], Babin and Vishik [17, 18], Ball [22, 23], Bernard and Wang
[38], Chepyzhov, Gatti, Grasselli, Miranville and Pata [56], Chepyzhov and Vishik [57],
Constantin and Foias [63], Constantin, Foias and Temam [64], Dlotko [84], Eden and
Kalantarov [90], Edfendiev, Zelik and Miranville [92], Feireisl [97, 98, 100], Feireisl andnn
Petzeltova [101, 102], Ghidaglia [117, 118], Ghidaglia and Temam [119], Goubet [125],
Goubet and Moise [126], Hale [135], Hale and Perissinotto [136], Haraux [138], Hoff and
Ziane [150, 151], Ladyzhenskaya [207], Liu and Zheng [240], Lu, Wu and Zhong [242],
Ma, Wang and Zhong [246], Miranville [265, 266], Miranville and Wang [267], Moise
and Rosa [269], Moise, Rosa and Wang [270], Pata and Zelik [307], Robinson [362],
Rosa [363], Sell [369], Sell and You [370, 371], Temam [407], Vishik and Chepyzhov
[413, 414], Wang [421], Wang, Zhong and Zhou [422], Wu and Zhong [429], Zhao and
Zhou [445], Zheng [450], Zheng and Qin [451, 452], Zhong, Yang and Sun [457], and
references therein.

There are 10 chapters in this book. Chapter 1 is a preliminary chapter in which we
collect some basic results from nonlinear functional analysis, basic properties of Sobolev
spaces, some differential and integral inequalities in analysis, the basic theory of semi-
groups of linear operators and the basic theory for global attractors. Some results in this
chapter will be used in the subsequent chapters, other results, though not used in the
subsequent chapters, will be very beneficial to the readers for further study.

The first topic studied in this book is compressible Navier-Stokes equations which
describe the fluid motion of conservation of mass, momentum and energy. Chapters 2–5
are devoted to the study of this challenging topic. Chapter 2 will concern the global ex-
istence, asymptotic behavior of solutions and the existence of universal attractors for the
compressible Navier-Stokes equations of a nonlinear 1D viscous and heat-conductive real
gas. In Chapter 3, we shall establish the global existence, asymptotic behavior of solutions
to initial boundary value problems and the Cauchy problem of the compressible Navier-
Stokes equations of a 1D polytropic viscous and heat-conductive gas. In Chapter 4, we
shall investigate the global existence, asymptotic behavior of solutions and the existence
of maximal attractors for the compressible Navier-Stokes equations of a polytropic vis-
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cous and heat-conductive gas in bounded annular domains in Rn (n = 2, 3). Chapter
5 will be concerned with the global existence and asymptotic behavior of solutions to a
polytropic viscous and heat-conductive gas with cylinder symmetry in R3.

For the compressible Navier-Stokes equations, we consult the works by Duan, Yang
and Zhu [87], Ducomet and Zlotnik [88], Feireisl and Petzeltova [103], Feireisl, Novotny
and Petzeltova [104], Frid and Shelukhin [106], Fujita-Yashima and Benabidallah [110,
111], Fujita-Yashima, Padula and Novotny [112], Galdi [115], Hoff [142–146], Hoff
and Serre [147], Hoff and Smoller [148], Hoff and Zarnowski [149], Hsiao and Luo
[158], Huang, Matsumura and Xin [160], Itaya [161], Jiang [164–167, 169–171], Jiang
and Zhang [174–177], Jiang and Zlotnik [178], Kanel [182], Kawashima [188, 189],
Kawashima, Nishibata and Zhu [190], Kawashima and Nishida [191], Kawohl [192],
Kazhikhov [193–195], LeFloch and Shelukhin [219], Lions [235], Matsumura [252],
Matsumura and Nishida [253–257], Nagasawa [283–287], Novotny and Stras̆kraba [301,˘
302], Okada and Kawashima [303], Padula [305], Qin [323, 325, 326], Qin and Hu [329],
Qin, Huang and Ma [330], Qin and Jiang [331], Qin and Kong [332], Qin, Ma, Cavalcanti
and Andrade [335], Qin, Ma and Huang [336], Qin, Muñoz Rivera [337, 339], Qin and˜
Song [343], Qin and Wen [344], Qin, Wu and Liu [345], Qin and Zhao [346], Valli and
Zajaczkowski [412], and the references therein.

The second topic studied in this book is a 1D thermoviscoelastic system which
describes the motion of conservation of mass, momentum and energy in the thermovis-
coelastic media. Chapter 6 will be devoted to the study of global existence, asymptotic
behavior and the existence of universal attractors for a 1D thermoviscoelastic model in
materials science.

The third topic considered in this book is that of some viscoelastic models. In Chap-
ter 10, we shall obtain the large-time behavior of energy of multi-dimensional nonhomo-
geneous anisotropic elastic system.

For the related (thermo)(visco)elastic models, we refer to Andrews [12], Andrews
and Ball [13], Chen and Hoffmann [54], Coleman and Gurtin [62], Dafermos [69, 75,
76], Dafermos and Nohel [79, 80], Fabrizio and Lazzari [95], Giorgi and Naso [121],
Greenberg and MacCamy [129], Guo and Zhu [132], Kim [197], Lagnese [209], Liu and
Zheng [239, 240], Niezgod́ka and Sprekels [293], Niezgod́ka, Zheng and Sprekels [294],
Qin, Ma and Huang [336], Racke and Zheng [355], Renardy, Hrusa and Nohel [361],
Shen and Zheng [373], Shen, Zheng and Zhu [376], Shibata [377], Sprekels and Zheng
[390, 391], Sprekels, Zheng and Zhu [392], Watson [424], Zheng [447, 448, 450], Zheng
and Shen [453, 454], Zhu [460], and the references therein.

The fourth topic under consideration is an investigation of a classical 1D thermoe-
lastic model. Such a model describes the elastic and the thermal behavior of elastic, heat
conductive media, in particular the reciprocal actions between elastic stresses and tem-
perature differences. The classical thermoelastic system is such a thermoelastic model
that the elastic part is the usual second-order one in the space variable and the heat flux
obeys Fourier’s law, which means that the heat flux is proportional to the temperature
gradient. In Chapter 7, we shall establish the global existence and exponential stability of
solutions to a 1D classical thermoelastic system of equations with a thermal memory. In
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Chapter 9, we shall study the blowup phenomena of solutions to the Cauchy problem of
a 1D non-autonomous classical thermoelastic system.

There is much literature on classical thermoelastic model; we refer the readers to
Burns, Liu and Zheng [46], Dafermos [67], Dafermos and Hsiao [78], Hale and Perissi-
notto [136], Hansen [137], Hoffmann and Zochowski [153], Hrusa and Messaoudi [155],
Hrusa and Tarabek [156], Jiang, Muñoz Rivera and Racke [172], Jiang and Racke [173],˜
Kim [198], Kirane and Kouachi and Tatar [199], Kirane and Tatar [200], Lebeau and
Zuazua [216], Liu and Zheng [238, 240], Messaoudi [260], Muñoz Rivera [274, 275],˜
Munoz Rivera and Barreto [277], Mu˜˜ noz Rivera and Oliveira [278], Mu˜˜ noz Rivera and˜
Qin [279], Qin [315], Qin and Muñoz Rivera [341], Racke [348], Racke and Zheng [355],˜
Slemord [378], Zheng [450], and the references therein.

Recently, Green and Naghdi [127, 128] re-examined the classical thermoelastic
models and introduced the so-called models of thermoelasticity of types II and III for
which the heat fluxes are different from Fourier’s law. Chapter 8 will concern the global
existence and exponential stability of solutions to the 1D thermoelastic equations of hy-
perbolic type, which is in fact a 1D thermoelastic system of type II with a thermal mem-
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