


Aspect-Oriented 
Requirements 
Engineering

Ana Moreira · Ruzanna Chitchyan
João Araújo · Awais Rashid Editors



Aspect-Oriented Requirements Engineering





Ana Moreira • Ruzanna Chitchyan • João Araújo
Awais Rashid
Editors

Aspect-Oriented
Requirements Engineering

123



Editors
Ana Moreira
João Araújo
Universidade Nova de Lisboa
Caparica, Portugal

Awais Rashid
University of Lancaster
Lancaster, United Kingdom

Ruzanna Chitchyan
University of Leicester
Leicester, United Kingdom

ISBN 978-3-642-38639-8 ISBN 978-3-642-38640-4 (eBook)
DOI 10.1007/978-3-642-38640-4
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013952959

ACM Computing Classification (1998): D.2, K.6

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Preface

Introduction

Aspect-oriented requirements-engineering (AORE) approaches aim to facilitate
identification and analysis of crosscutting concerns (also termed as aspects) during
requirements engineering to understand their potential effects and trade-offs with
respect to other stakeholder requirements.

Often AORE approaches extend existing requirements-engineering techniques
with additional support for identification, modularisation, composition, and
analysis of crosscutting concerns. Such support is missing in most contemporary
requirements-engineering techniques. For instance, in the classical use cases
approach [1], non-functional requirements (NFR) cannot be readily modelled.
Although techniques such as goal-based approaches [2, 3] support modularisation
and analysis of such NFRs, they lack effective composition mechanisms to reflect
and explore the complex dependencies and interactions (between NFRs themselves
as well as NFRs and functional concerns) fully. Thus, AORE focuses on providing
systematic means for modularisation, composition, and analysis of crosscutting
concerns in requirements.

In the recent years significant work has been carried out in aspect-oriented
requirements engineering. The aim of this book is to serve as a consolida-
tion medium. The message given here is that whatever requirements engineering
approach one uses, there will be a problem of treatment of broadly scoped concerns,
which repeatedly appear, often have system-wide effects, and interact (e.g. conflict
or supplement) with other requirements as well as influence the architectural
decisions for the system-to-be. In this book we discuss how such aspects can be
identified, represented, composed, and reasoned about, as well as used in specific
domains and in industry. Thus, the book does not aim to present or promote a
particular aspect-oriented requirements engineering approach but aims to provide
an understanding of the aspect-oriented perspective on requirements engineering:
what challenges does it tackle that supplement the more established requirements

v



vi Preface

engineering work, what tasks and processes does it use, and how does it benefit its
adopting community.

Use of the Crisis Management [4] case study has been advised throughout the
book as the common medium for demonstration of the work presented in each
chapter. This is to shelter the reader from having to understand a potentially large set
of different examples and instead focus on the essence of each presented approach.
However, in some chapters, where the application of AORE to a specific domain
is of significance by itself (e.g. in chapters discussing use of AORE in industrial
setting), the common case study has been omitted.

1 Getting Started: AORE Main Concepts

In AORE a concern is defined as a unit encapsulating (one or more) requirements
related to a certain matter of interest. For instance, a use case or a viewpoint with its
requirements is an example of a concern.

An aspect (or crosscutting concern) is a modularisation unit for those require-
ments that do not align well into the established single-type decomposition mod-
ularisation units. For example, while use case units are ideal for functionality
modularisation, non-functional requirements do not fit into the use case structure,
but normally crosscut several use cases. Therefore, an aspect at the requirements
level is a broadly scoped property (represented by a single requirement or a coherent
set of requirements), which affects multiple other requirements in the system so that
it may constrain the specified behaviour of the affected requirements or influence
the affected requirements to alter their specified behaviour.

As illustrative example, consider a security requirement that constrains a require-
ment providing access to certain types of data in the system so that only a
certified set of users may access that data. Similarly, another security requirement
may influence communication requirements by altering their behaviour to impose
encryption constraints. The requirements affected by a requirements-level aspect
may already have been partitioned using abstractions such as viewpoints, use
cases, and themes. Figure 1 shows a requirements-level aspect affecting multiple
requirements in such a partitioning. Composition specification is used to relate
requirements-level aspects with the non-crosscutting requirements.

Some awareness of the crosscutting concerns existed in the Requirements
Engineering community before AORE, for instance, in works on NFR/softgoals [5]
and viewpoints [6]. However, this was a segmented perspective, with crosscutting
concerns considered as a “special” type of concerns, with “unusual” properties.
AORE, on the other hand, provides a general unified framework explaining the
properties of the crosscutting requirements as the natural result of (the traditional)
modelling of the multi-perspective world with a single type of modularisation unit
(such as use cases and goals). Also, AORE underlines the need for composition of
concerns and aims to provide an extensive support for it. Compositions are used for
understanding and analysis of concern interdependencies—for detection of potential



Preface vii

Fig. 1 Requirements-level aspects constraining and influencing (via a composition specification)
other requirements

conflicts between various concerns/requirements very early on in order to either
take corrective measures or make appropriate decisions for the next development
step. The composed requirements also become valuable sources of validation for
the complete system, as well as potential artefacts for requirement reuse.

Therefore, if requirements aspects are not effectively modularised, it is not
possible to reason about their effect on the system or on each other, and the lack
of modularisation of such properties can result in a large ripple effect on other
requirements or architectural components upon evolution. The provision of effective
means for handling aspects in requirements makes it possible to establish critical
trade-offs early on in the software lifecycle.

Figure 2 depicts a general AORE framework, highlighting in grey the activities
where AORE makes its major contribution.

One other issue noted by the AORE work is the need to trace crosscutting
properties across the lifecycle of a software system. It is not sufficient to identify and
reason about crosscutting concerns during requirements engineering. Once these
concerns and their associated trade-offs have been established, it is essential that
the software engineers can trace them to architecture (illustrated in Fig. 2 by the
concern mapping activity), design, implementation and subsequent maintenance and
evolution. Modularisation of crosscutting properties at the requirements level is the
first step towards establishing such traceability.

As in other AO software lifecycle stages, AORE uses the concepts of joinpoints,
pointcuts, advice, intertype declarations, and composition (or weaving) [7]. These
concepts are normally interpreted somewhat differently for each individual AORE
approach and the full or partial set of these concepts may be utilised by each given



viii Preface

Concern
Identification

Concern
Representation

Concern
Composition

Trade-Off
resolution

Architecture
Design

Concern
Mapping

Elicitation

Validation

Legend:

Activity in the process
Flow of activities

Overlapping of activities

AORE contribution

Fig. 2 AORE in the broader context of Requirements Engineering

work. However, presence of (any of) these notions in an RE approach will generally
indicate presence of an AO perspective in it. These notions are generically defined
below:

• Aspects can only be invoked, or composed with other modules, at some well-
defined and principled points within the software artefacts. These points are
referred to as joinpoints. As stated in [8]: “A joinpoint is a point of interest in
some artifact in the software lifecycle through which two or more concerns may
be composed. A joinpoint model defines the kinds of joinpoints available and how
they are accessed and used”. Examples of such well-defined, principled points in
AORE are, for instance, goal notes, or tasks in goal graphs, or identifiable (e.g.
via ID or name) requirements and concerns encapsulating those requirements,
identifiable (e.g. via their grammatical role or meaning) parts of text, etc.

• Pointcuts specify a set of joinpoints at which a given aspect should interact with
some other modules. Pointcuts can be defined by extension, i.e. by enumerating
each joinpoint relevant for the given aspect application, or by intension, i.e.
via a more abstract selection criteria, such as regular expressions, or semantic-
matching queries. Because aspects normally broadly affect a number of other
concerns, defining their interactions by extension is rather inefficient. Conse-
quently, in AOSD, pointcuts are normally defined by intension [7]. Thus, a
pointcut normally is a predicate that matches joinpoints.

• As noted above, an aspect affects a set of other concerns at the joinpoints. In
AOSD terminology, it is said that aspects advise other concerns. An advice
represents the particular part of aspect that will manifest itself (e.g. by adding or
changing behaviour) at a given joinpoint of the affected concern. Traditionally,
an advice in AOSD implies a behaviour-related interaction between aspectual



Preface ix

and non-aspectual artefacts. Such an interaction is also defined in respect with
some temporal, conditional, or unconditional order.

• Intertype declarations (also called introductions) are an additional mechanism
for directly modifying the structure of the original artefacts. For instance, an
intertype declaration may insert a new requirement into a viewpoint or even
change subtype structure, etc.

• Composition (also called weaving) is the integration of the separated crosscutting
elements back into the modules crosscut by them. However, in AORE, it is
not always necessary to physically integrate the aspectual elements into other
modules [7]. Often a composition specification is sufficient for reasoning about
aspectual and non-aspectual module interactions. Thus, composition here can
often imply projecting the constraints and influences of individual requirements-
level aspects on other system requirements, based on the knowledge inherent in
the composition specification.

The composition specification define which aspectual elements (advice, intertype
declarations, and so forth.) affect which joinpoints (selected by pointcuts) of which
other modules, in what way, and defines what are the temporal, conditional, or
unconditional circumstances of aspect invocation.

In summary, AORE uses the above outlined concepts to provide improved
separation of concerns and composition at the requirements level. The composition
definitions are often used as an analysis tool for conflict-point identification and
interaction understanding, and, in some cases [9], transformational compositions
are also realised.

It is also essential to note that not all aspectual artefacts identified at the
requirements level will subsequently be represented as code-level aspects. On the
contrary, some may well transform into other software artefacts (e.g. architectural
topology) or business-related decisions (e.g. procedures for security policy used by
the business) before an application is implemented. In addition, new aspects, often
related to the selected development technology, will emerge at the other stages of
software development, but these will not be visible in requirements.

2 Structure of the Book

This book is largely alighted with the main AORE-related activities depicted in
Fig. 2: concern identification-related issues are discussed in the similarly titled
Part I; topics on concern representation and composition are discussed in Part II
titled Concern Modelling and Composition; topics of concern mapping (e.g.
architectural implications of requirements level aspects and aspects in particular
domains) are presented in Part III titled Domain-Specific Use of AORE; the issues of
trade-off, conflicts, and validity are discussed in Part IV, under the title of Interaction
Analysis; finally, under the title AORE Evaluation Part V presents two perspectives



x Preface

on how AORE is used in industry and an overview chapter on evaluation work in
AORE so far.

The Concern Identification section discusses crosscutting concern identifica-
tion in textual as well as model-based requirements. The aim of concern identifica-
tion is to, first of all, facilitate building the knowledge on what crosscutting occurs in
requirements and why. Along with such knowledge collection, identification should
be accompanied with modularisation support, which, ideally, can propagate the
modularity to later stages of software development. In this section, Chap. 1 describes
the EA-Miner tool-based approach, which offers automated support for identifying
crosscutting in such requirements artefacts as viewpoints or use cases, which consist
of natural language text. The main characteristic of this approach is the use of natural
language processing (NLP) for concern identification. Chapter 2 presents a goal-
based approach that uses a list of adaptation rules for the requirements aspects to be
managed at runtime. It explains how different concepts in requirements aspects are
formulated and reasoned about. The basic adaptation rules are classified according
to the roles played in the runtime changes.

The Concern Modelling and Composition section, which includes Chaps. 3–7,
is focused on modelling and composition definition in AORE. Since AORE defines
an aspect as a new type of module with its particular rules of interacting with other
modules, it is essential to deliver a good modelling support for representation of
these new modules and their interrelationships with each other as well as non-
aspectual modules. There are the challenges tackled in the present section.

Chapter 3 introduces an aspectual scenario-based approach where sequence
diagram and state machines are modelled using a technique for modelling and
composition of patterns based on graph transformations called MATA (Modelling
Aspects Using a Transformation Approach).

Chapter 4 describes a semantics-based composition approach applied to textual
requirements. Here the composition specifications are based on the semantics
of the natural language. This is achieved by annotating the natural language
requirements with information on their grammatical and semantic properties, and
using these annotations as well as natural language semantics as a joinpoint model
for composition specification.

Chapter 5 presents the composition mechanism for aspect-oriented user require-
ments notations (AoURN). The focus is on interleaving and enhanced matching
based on semantics composition rules. Interleaved composition allows two scenarios
to be combined keeping the overall behaviour of the original scenarios. Semantics-
based matching allows for a class of refactoring operations to be performed on an
AoURN model without breaking the matches of an aspect’s pattern.

Chapter 6 presents AOV-graph, an approach that deals with the crosscutting
problems arising from interactions in goal models. This approach helps in defining a
crosscutting relationship which modularises interactions and provides composition
and visualisation mechanisms to analyse and model the goal-based requirements.

Chapter 7 shows how to identify and model crosscutting concerns in Problem
Frames. This is particularly relevant as in problem frames some requirements
appear in several (sub) problems diagrams, resulting in scattering effect. This work

http://dx.doi.org/10.1007/978-3-642-38640-4_1
http://dx.doi.org/10.1007/978-3-642-38640-4_2
http://dx.doi.org/10.1007/978-3-642-38640-4_3
http://dx.doi.org/10.1007/978-3-642-38640-4_7
http://dx.doi.org/10.1007/978-3-642-38640-4_3
http://dx.doi.org/10.1007/978-3-642-38640-4_4
http://dx.doi.org/10.1007/978-3-642-38640-4_5
http://dx.doi.org/10.1007/978-3-642-38640-4_6
http://dx.doi.org/10.1007/978-3-642-38640-4_7


Preface xi

shows how to compose such concerns with the elements they crosscut via a textual
composition language.

The Domain-specific use of AORE section discusses specific uses of
requirements-level aspects, like architecture derivation from requirements,
modelling security requirements with aspects, and volatile requirements modelling.
This section demonstrates how effectively AORE can be used in more specific
contexts. This part consists of Chaps. 8–10.

Chapter 8 offers a strategy to derive architectural component-based model from
an aspect-oriented requirements specification. It uses model-driven development
where meta-models and transformations are specified and implemented.

Chapter 9 presents an approach for handling changes made to security-critical
programmes. The authors observe that when a change happens (in any part of a
system), the validation procedure for the security requirements may need to be
updated even if the security requirements have not changed.

Chapter 10 demonstrates how can help to deal with volatile (i.e. highly unstable)
requirements. Here it is noted, that although volatile concerns are not always
crosscutting, they have the same issues of independency, modular representation
and composition that are required for aspects. Thus, AO perspective is particularly
fruitful in this context. Moreover, the chapter discusses how evolution, constrained
by volatile requirements, is facilitated via adoption of an aspect-oriented approach.

Aspects bring with themselves a new set of challenges of handling independen-
cies and interactions. These challenges are discussed in the Interaction Analysis
section. Aspects composition may result in undesirable behaviour that violates
the overall systems requirements. These interactions happen due to side effects
introduced by aspect composition, such as interference or negative contributions.
These are discussed in Chaps. 11–14.

Chapter 11 shows an approach and tool called EA-Analyzer that automates
the process of detecting conflicts within textual AO requirements specifications.
The aim is to facilitate the requirements engineers’ work with large natural lan-
guage specifications, which may contain numerous interdependencies. An empirical
evaluation of the tool is also discussed, showing that conflicts within AO textual
requirements specifications can be detected with a good accuracy.

Chapter 12 presents a tool-supported approach for conflict management at the
AORE level. It uses a hybrid multi-criteria analysis technique to perform trade-offs
analysis and obtain a ranking of concerns. This technique can be used to support
architectural choices during the software architecture design and “what-if” scenario
analysis.

Chapter 13 presents a use case-driven approach and tool for analysing consis-
tency at the level of requirements modelling. Activities are used to refine use cases
and are combined with a specification of pre-and post-conditions into an integrated
behaviour model. This is formalised using the graph transformation theory and used
for reason about consistency.

Chapter 14 shows an approach where features are treated as aspects and feature
composition as aspect composition. They use Composition Frames to compose
aspects and resolve aspect interactions at runtime.

http://dx.doi.org/10.1007/978-3-642-38640-4_8
http://dx.doi.org/10.1007/978-3-642-38640-4_10
http://dx.doi.org/10.1007/978-3-642-38640-4_8
http://dx.doi.org/10.1007/978-3-642-38640-4_9
http://dx.doi.org/10.1007/978-3-642-38640-4_10
http://dx.doi.org/10.1007/978-3-642-38640-4_11
http://dx.doi.org/10.1007/978-3-642-38640-4_14
http://dx.doi.org/10.1007/978-3-642-38640-4_11
http://dx.doi.org/10.1007/978-3-642-38640-4_12
http://dx.doi.org/10.1007/978-3-642-38640-4_13
http://dx.doi.org/10.1007/978-3-642-38640-4_14


xii Preface

The AORE evaluation section describes experiences of use of AORE in industry
and presents an overview of AORE evaluation work so far. The first part consists of
Chaps. 15 and 16. Chapter 15 discusses how the technique called Requirements
Composition Table (RCT) is used in two financial applications. The RCT technique
has been implemented for a number of Wall Street applications at various investment
banks. This chapter illustrates how RCT can help perform change impact analysis
for releases and assess test coverage of existing regression test suites.

Chapter 16 discusses the application and evaluation of two AORE approaches
(Theme/Doc and MDSOCRE) in the slot machines domain. This application
involved several large requirement documents that have ambiguity issues and
aspectual interactions.

Finally, Chap. 17, which also concludes the book, draws upon experience from
evaluation performed in other phases of development and also the problems that can
be experienced when evaluating AORE approaches to establish a series of guidelines
to assist software developers.

3 Crisis Management System Case Study

In order to observe how the same problem is addressed by different approaches, we
adopt a common case study to be used throughout the chapters of this book. The case
study domain is crisis management systems, i.e. systems that manage the relevant
parties, activities and information involved in solving a crisis. This case study
was proposed as an exemplar to evaluate aspect-oriented modelling approaches
in 2010 [4] and has since been used by the AOSD community for the evaluation
and comparison of aspect-oriented approaches (e.g. CMA workshop series). The
requirements used to create this exemplar were based on the real requirements
document for crisis management systems created by Optimal Security [10].

The general objectives of a Crisis Management System (CMS) is to assist in the
coordination of a crisis; to guarantee that a catastrophic situation is under control;
to mitigate the crisis effects by allocating and managing the available resources in
an effective manner; to identify, create, and execute missions in order to manage
the crisis; and to recover the crisis information to allow future analysis [4]. A crisis
can range from natural disasters (e.g. earthquakes, fire, floods), terrorist attacks or
sabotage (e.g. explosions, kidnapping), accidents (e.g. car crash plant explosion,
plane crash) and technological disruptions. All these are examples of emergency
situations that are unpredictable and can lead to severe after-effects unless handled
immediately.

A crisis management system facilitates the communication and interoperation
between all stakeholders involved in handling the crisis (e.g. government, police
systems, medical services, military systems). A CMS allocates and manages
resources, and facilitates access to relevant information to authorised users of the
CMS.

http://dx.doi.org/10.1007/978-3-642-38640-4_15
http://dx.doi.org/10.1007/978-3-642-38640-4_16
http://dx.doi.org/10.1007/978-3-642-38640-4_15
http://dx.doi.org/10.1007/978-3-642-38640-4_16
http://dx.doi.org/10.1007/978-3-642-38640-4_17


Preface xiii

Finally, several non-functional properties are related to CMS, e.g. availability,
response time, security, safety, mobility, persistence and multi-access. They are
broadly scope and potentially crosscutting. The full case study documents are
provided in the Appendix A of this book.

4 Intended Audience

This book is intended for software developers, software engineers, industrial
trainees, and undergraduate and postgraduate students.

5 Acknowledgements

We are grateful to many people and several institutions for their contributions on the
development of AORE.

To our co-organisers of Early Aspects workshop series. Sixteen editions have
been organised since 2002. Thank you to Paul Clements, Bedir Tekinerdogan, and
Elisa Baniassad for helping with the steering of the workshop, and to Alberto
Sardinha, Alessandro Garcia, Carla Silva, Christa Schwanninger, Gunter Muss-
bacher, Jan Gerben Wijnstra, Jeff Gray, Jon Whittle, John Grundy, Mónica Pinto,
Nan Niu, Pablo Sanchez, Paulo Merson, Uirá Kulesza, and Vander Alves, for taking
the lead of the organisation in different editions. We are grateful for the interest
demonstrated by all the authors who submitted their work and helped so much in
creating the Early Aspects community, to the Program Committee members for
offering their time to review the papers, to the participants that helped keeping
discussions alive, to everyone that contributed to the increase of the number of
postgraduate students that accomplished their dissertations in the field of Early
Aspects, and to all the reviewers of the chapters included in this book.

A special word of thanks goes to Pete Sawyer for the discussions we had with him
from the time the idea born in our minds. He contributed with the first vision paper
on AORE, and his expertise and extensive experience on Requirements Engineering
helped us finding an integrated view for RE with aspects.

During these 15 years of work, several people contributed to the development
of Early Aspects through several projects funded by European Union, EPSRC,
Fundação para a Ciência e Tecnologia (FCT), Conselho de Reitores das Uni-
versidades Portuguesas (CRUP) (bilateral projects with France and Spain), and
CAPES/GRICES (bilateral projects between Brazil and Portugal). A special thanks
to the European AMPLE and AOSD-Europe projects.

Finally, we thank to CITI research centre at Universidade de Nova Lisboa for
funding several visits of Awais to Lisbon.


