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Preface

Partial differential equations (PDEs) are a fundamental tool in the modeling of
phenomena arising in the physical sciences. PDEs with Hamiltonian structure are
a distinguished subset, which not only model systems with conserved quantities
(e.g., energy and momentum), but also possess an array of special techniques for
their analysis and simulation. They constitute an active area of research where
major innovations have been and continue to be made from both the mathematical
and computational sides. Not only do these innovations benefit the field itself but
also contribute to progress in a vast range of other scientific areas. Applications of
Hamiltonian PDEs are numerous in fluid mechanics, plasma physics, and nonlinear
optics with such notable examples as the Korteweg–de Vries equation and the
nonlinear Schrödinger equation.

In the last few decades, significant progress has been achieved in the mathe-
matical study of these evolutionary PDEs by adopting the “dynamical systems”
approach, extending refined analytical techniques of Hamiltonian dynamical sys-
tems to the setting of PDEs. This point of view has led to the consideration
of the global behavior of orbits for a Hamiltonian PDE in an appropriate phase
space, the pursuit of the mathematical technology of normal forms, the study
of stable orbits and Kolmogorov–Arnold–Moser (KAM) tori, and a number of
results analogous to Nekhoroshev stability and Arnold diffusion. In particular,
building on the experience gained from the qualitative study of finite-dimensional
dynamical systems, the search for periodic and quasi-periodic solutions has been
regarded as a first step towards better understanding the complicated flow evolution
of Hamiltonian PDEs. A central tool is transformation theory including Birkhoff
normal form transformations. In the broad picture, the goal is to understand some
of the important structures of infinite-dimensional phase spaces in which these
evolutionary equations are naturally posed, such as periodic orbits, embedded
invariant tori, center manifolds, and the different effects of resonances in the
non-compact versus compact cases. Techniques from transformation theory for
Hamiltonian PDEs with a small parameter have also been successfully used in recent
work on water waves, allowing for the systematic derivation of Hamiltonian models
in various asymptotic limits.
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vi Preface

On 10–12 January 2014, a conference on “Hamiltonian PDEs: Analysis, Com-
putations and Applications” was held at the Fields Institute for Research in Math-
ematical Sciences in Toronto, bringing together a group of world-class researchers
to present and discuss the latest developments in this field. Given the wide range
of applications and mathematical tools, a motivating theme of this event was the
interaction of specialists in dynamical systems, KAM theory, normal form theory,
PDE theory and variational methods, as well as applied and numerical analysts, and
experts in water waves. The program consisted of eighteen lectures by distinguished
faculty, together with three shorter presentations by junior speakers including two
graduate students. The participants came from Canada, Europe, and the USA.

This conference was also an opportunity to honor our friend and colleague Walter
Craig, who has made significant contributions to this field, on the occasion of
his 60th birthday. Walter obtained his Ph.D. degree from the Courant Institute of
Mathematical Sciences (NYU) in 1981. He has held faculty positions at CalTech,
Stanford University and Brown University before joining McMaster University
as a Professor and Canada Research Chair of Mathematical Analysis and its
Applications. He has received a number of prestigious awards including an Alfred
P. Sloan Fellowship, an NSF Presidential Young Investigator Award, a Killam
Research Fellowship and is a Fellow of the AMS, the AAAS, the Fields Institute
and the Royal Society of Canada. He has served on the editorial boards of
several journals including the Philosophical Transactions of the Royal Society,
the Proceedings of the AMS, and the SIAM Journal on Mathematical Analysis.
Walter is a world-renowned mathematical analyst with interests in nonlinear PDEs,
Hamiltonian dynamical systems and their physical applications. He has authored
more than 100 research articles.

This special volume presents a unique selection of both survey and original
research papers by experts who participated in that conference. The various
topics discussed in this volume are representative of the wide scope covered by
Hamiltonian PDEs, and the results range from mathematical modeling to rigorous
analysis and numerical simulation. These topics also reflect Walter Craig’s breadth
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in research interests and his influence in this field. This book will be of particular
interest to graduate students as well as researchers in mathematics, physics, and
engineering, who wish to learn more about the powerful and elegant analytical
techniques for Hamiltonian PDEs.

The editors would like to thank the Fields Institute for Research in Mathematical
Sciences and the Department of Mathematics & Statistics at McMaster University
for their generous support. In particular, we are grateful to Alison Conway, Drs.
Matheus Grasselli and Hans Boden for their assistance with the organization of the
conference, as well as to Debbie Iscoe, Dr. Carl Riehm, and the Springer team for
their assistance with the publication of this special volume. We are also thankful
to the authors for contributing such excellent articles and to the referees for their
invaluable help during the review process. Finally, we dedicate this book to Walter
Craig who has been a constant source of inspiration, and whose enthusiasm and
friendship have never waned. We would like to extend to him our warmest wishes
for many more happy events to come.

Newark, DE, USA Philippe Guyenne
Chicago, IL, USA David Nicholls
Toronto, ON, Canada Catherine Sulem
April 2015
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Hamiltonian Structure, Fluid Representation
and Stability for the Vlasov–Dirac–Benney
Equation

Claude Bardos and Nicolas Besse

Pour Walter Craig, en remerciement pour ses contributions
scientifiques et son amitié.

Abstract This contribution is an element of a research program devoted to the
analysis of a variant of the Vlasov–Poisson equation that we dubbed the Vlasov–
Dirac–Benney equation or in short V–D–B equation. As such it contains both new
results and efforts to synthesize previous observations. One of main links between
the different issues is the use of the energy of the system. In some cases such
energy becomes a convex functional and allows to extend to the present problem the
methods used in the study of conservation laws. Such use of the energy is closely
related to the Hamiltonian structure of the problem. Hence it is a pleasure to present
this article to Walter Craig in recognition to the pioneering work he made for our
community, among other things, on the relations between Hamiltonian systems and
Partial Differential Equations.

1 Introduction

This article extends a program (cf. [1, 2]) devoted to the mathematical analysis of an
avatar of the Vlasov–Poisson equation, where the “Coulomb potential” is replaced
by the Dirac mass. Since it was proposed by Benney [3] and Zakharov [28] for the
description of water waves, it is dubbed Vlasov–Dirac–Benney equation (or in short
V–D–B equation). Therefore the V–D–B equation reads
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2 C. Bardos and N. Besse

@tf C v � rxf � rx�f � rvf D 0 ; with �f .t; x/ D
Z
Rd

f .t; x; v/dv: (1)

And the classical conservation of mass and energy turn out to be given by the
formula,
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f .t; x; v/C .�f .t; x//
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D 0:

1.1 Some Physical Motivations for the Introduction
of the Dirac Potential

One of the many physical motivations for the introduction of this equation is the
description of a plasma constituted of ions in a background of “adiabatic” electrons
which instantaneously reach a thermodynamical equilibrium (i.e. electrons follow
a Maxwell–Boltzmann distribution). Therefore the charge density of electrons is
given in term of the electrical potential ˚� by the formula

�� D �0e
� e˚�

kBTe ;

with kB the Boltzmann constant, e the electron charge and Te the equilibrium
temperature of electrons. Finally the parameter � represents the Debye length. Hence
the “Coulomb law” couples the electrical potential˚� to the charge density such that

� �2�˚� D �� � �0e� e˚�
kBTe ; with �� D

Z
Rd
v

f�.t; x; v/dv:

Now since the electrical potential energy e˚� is supposed to be small in comparison
to the kinetic energy kBTe, i.e je˚�=.kBTe/j � 1, after linearization on the
exponential function, at first order we get
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��2�˚� D �� � �0 C e�0
kBTe

˚�:

Setting � to zero (quasineutrality assumption) and since �0 and Te are supposed to
be constant, we obtain for the electric field E� the expression

E� D �rx˚� D kBTe

e�0
rx

Z
Rd
v

f�.t; x; v/dv;

which appears in the Vlasov equation (1).

1.2 Some Mathematical Motivations for this Analysis

Since in the Eq. (1) the electric field E is given in term of the electrons density
by an operator of order 1, while in the classical Vlasov–Poisson case it is given
by an operator of degree �1, the solution is much more dependent on the initial
data. Therefore, while for the classical Vlasov–Poisson equation the issue is the
large time asymptotic behavior, here what is at stake is the well-posedness of the
problem in term of the initial data. On the other hand since the electrical potential
is given by a purely local operator there exists a strong connection between the
dynamics of hyperbolic systems of conservation laws and the V–D–B equation. This
connection appears even more clearly when one uses for the Vlasov equation a
kinetic representation of the form (cf. Sect. 3.2)

f .t; x; v/ D
Z

M
�.t; x; �/ı.v � u.t; x; �//d�; (2)

which leads to non local “operator type” conservation laws.
For such conservation laws the invariants play an essential role and as expected,

they coincide (cf. Theorem 6) with the Lax–Godunov conserved quantities. When
such invariants turn out to be convex (with respect to the parameters of the
dynamics) they play the role of convex entropies and ensure the local-in-time
stability and well-posedness of the Cauchy problem.

As this is the case for the most general Vlasov equations (as explained for
instance in [22]) the present V–D–B equation can be viewed as a Hamiltonian
system related to the minimization of an energy. Moreover the same point of view
can be used to formalize the relations between classical and quantum mechanics via
semi-classical (WKB) limits and Wigner measure (cf. Sect. 6). Such convergence
will be always true at the formal level, or with analytical initial data. However,
as expected, proofs in the Distributions (or Sobolev) setting will be available only
when the limit enjoys the same stability i.e. mostly in the case where a convex
entropy is present. Even if the analyticity hypothesis is not “physical”, conclusions
that follow are important, and especially in the case of the one-dimensional space
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variable. Then the cubic nonlinear Schrödinger equation and its generalization as
infinite systems of coupled nonlinear Schrödinger equations (cf. [28]) are integrable
systems with a rich algebraic structure including in particular the construction of
infinite family of conservation laws. In the semi-classical limits these structures
(at least for analytic initial data) do persist and make the one-dimensional-space-
variable V–D–B equation a quasi-integrable system in the sense of [28].

The paper is then organized as follows. First the emphasis is put on the one-
dimensional space variable which as quoted above contains more mathematical
structure and provides also more explicit examples. To underline the dimension
one in the corresponding equations, the symbol rx and rv are replaced by the
symbol @x and @v . In Sect. 2, the analysis of the linearized problems turns out to
be (and this should not be a surprise) in full agreement with the properties of the
fully nonlinear systems. Moreover this produces also a natural tool for the study of
nonlinear perturbations which is the object of the next section.

In the Sect. 3, the Hamiltonian structure and the fluid representation of the kinetic
V–D–B equation are described. In this setting, under strong analyticity hypothesis a
local-in-time stability result can be proven and this is the object of the Theorem 5.
To obtain stability results with finite order regularity, the entropies have to be
introduced and compared with the classical invariants of the Hamiltonian system.
This is the object of the Sect. 4 and Theorem 6. The next Sect. 5 is devoted to several
examples of application.

For the discussion of the semi-classical limits in the Sect. 6, we follow similar
route. First formal computations are given. Then there are validated with analyticity
hypothesis (cf. Theorem 9). Such results are compared with a theorem of Grenier
which is valid in any space variable, with Sobolev type regularity hypothesis, but
which concerns only the Wigner limit of “pure states” i.e. mono-kinetic solutions of
the V–D–B equation.

As a conclusion we return to the relation between Wigner limit and inverse
scattering.

2 Properties of the Linearized Problem and Consequences

Long time ago, it has been observed that x-independent solutions

v 7! G.v/ � 0 with
Z
R

G.v/dv D 1;

are stationary solutions of the Vlasov–Poisson equation. Same simple observation
is also valid for the V–D–B equation. Writing

f .t; x; v/ D G.v/C Qf .t; x; v/;


